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J. Phys. A: Math. Gen. 23 (1990) 299-318. Printed in the UK 

Dynamics of spiral waves in non-equilibrium media 

I S Aranson and M I Rabinovich 
Institute of Applied Physics, Academy of Sciences of the USSR, Gorky 603600, USSR 

Received 20 February 1989 

Abstract. A class of non-equilibrium media described by equations close to gradient one 
is considered. For the analysis of the field structure dynamics in such media an asymptotic 
method is proposed where the generating solution is that of the gradient system. The 
analysis is based on the generalised Ginzburg-Landau equation. For E = 0 this equation 
can be written as aa/ai  = - 6 F [ a ] / 6 a *  where F is the Lyapunov functional: 

F = [f(la12)+ 1 V ~ l 2 1  dx dy 

and solutions are possible in the form of static spiral waves centred on the point (x, y). 
When O <  E cc 1 a solution is sought in the form of an asymptotic series with the first term 
having the form of a spiral wave, but the parameters x, y and phase will be slow functions 
of time. Using this method the interaction of a pair of spiral waves in media with hard 
and soft excitation is investigated and the stochastic drift of a spiral wave in a periodically 
inhomogeous field is predicted. 

1. Introduction 

Most simple and natural mechanisms for the origin of spatial disorder in homogeneous 
isotropic nonlinear media are, at first sight, similar to those revealed in the onset of 
spatial chaos in Hamiltonian systems and similar mechanisms. This is readily illustrated 
by a trivial spatio-temporal analogy for homogeneous media described by gradient 
equations. For example, under the action of a static external field periodically 
inhomogenous in space (inhomogeneous heating) a periodic chain of convective rolls 
may change over to disordered state that will look, for example, like a chaotic sequence 
of rolls rotating in opposite directions (Love et a1 1983). The mechanism of the onset 
of deterministic chaos in this, case is analogous to the known mechanism of the 
stochastisation of a nonlinear oscillator under the action of a harmonic force. However, 
such a static spatial chaos is relevant only for unbounded media. 

In bounded regions, static disorder cannot, evidently, evolve: any fields that seem 
to be disordered at finite distances may be periodically extended in space. 

Nevertheless, spatial disorder may exist in bounded systems, but it is time dependent 
rather than static. An example of such a spatio-temporal chaos is a disordered motion 
of spiral waves that we have found in static periodically inhomogeneous fields. In a 
more general case, such a random walk of structures (spirals) may be caused by the 
interaction of the structures rather than by regular inhomogeneities (see, for example, 
Aranson er a1 1987, Linde 1984). The random walk of the field structures resulting in 
the mixing of their orbits even in limited regions of space seems to be one of the most 
general mechanisms of the self-generation of spatio-temporal deterministic chaos- 
dynamical turbulence-in nonlinear non-equilibrium media. 
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The character of nonlinear processes (the formation and interaction of structures, 
the evolution of turbulence, and so on) in non-equilibrium media depends significantly 
on the character of transient processes that are implemented behind a critical point. 
It is most important here to distinguish between oscillatory and aperiodic instabilities. 
The aperiodic behaviour generally results in the formation (as t + CO) of various spatial 
structures. 

The stability of such structures near the critical point for the case under study 
indicates that they correspond to a minimum of some functional. The process of 
pattern formation and, consequently, the dynamics of media with such behaviour can, 
as a rule, be described by a gradient model (Landau and Lifshitz 1982) 

aa SF[a]  
at Sa * 
-- - -- 

where F [ a ]  is the Lyapunov functional for which we use the ‘free energy’ functional. 
Here a may have the sense of a ‘complex order parameter’. 

For the oscillatory ‘transient behaviour’ of the medium, turbulence may occur. 
Formally, this situation corresponds to the appearance of a non-trivial attractor (e.g. 
attracting stochastic set) in the functional space. Such a behaviour of nonlinear 
non-equilibrium media cannot be described by a gradient model. Because the terms 
responsible for the deviation of the system from a gradient model are usually obtained 
as a result of the expansion in the supercriticality parameter, for moderately high 
supercriticalities it seems practical to consider a special class of models that are close 
to gradient models: 

Here 4 is the operator that may depend on the dynamic variable as well as on the x, 
y coordinates and time t, E is the small parameter of the problem. 

Indeed, for E = 0, the initial model has a solution in the form of stable structures 
and, although for 0 < E << 1 these structures are no longer static, they can be used as a 
generating solution in the construction of a perturbation theory for the description of 
a non-trivial behaviour of the non-equilibrium media under study. 

Consider as an example the media described by a generalised two-dimensional 
Ginzburg-Landau (GL) equation 

aa 
at  
-= af(la12)+Aa +iE(G(la12) + cAa +. . .). 

It is, apparently, represented in the form ( 2 )  with the functional 

F =  J {f(la12)+lVa12} dx dy 

(3) 

(4) 

Below we shall investigate the dynamic solution of (3) for which the generating solution 
has the forms of the spiral wave ‘origin’ (Hagan 1982) ( p ,  f3 are polar coordinates) 

that are most typical of (3) when E = 0. With the perturbation ( E  # 0) taken into 
account, the generating solution is distorted. However, the smallness of E permits us 
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to seek a new solution asymptotically. In the general case, the perturbation has two 
consequences: the spiral rotation and the drift of the spiral core. The rotation is 
accompanied by the whirling of the initial (generating) wavefront and the solution 
takes on a form 

a = + ' " ( p )  exp[i(me+Rt-+(p))]  ( 6 )  

where +(O)=O and + ( p ) + k p  as p-00 ( k  is the asymptotic wavenumber, R is the 
spiral rotation frequency). This situation occurs, in particular, when the weak com- 
plexity of (3) Goal2) # 0 is taken into account. 

When we are concerned with the perturbations that cause the drift of the spiral 
core, the proximity of the perturbed system to a gradient one guarantees a low-velocity 
drift. 

The paper consists of seven sections. Some details of the asymptotic method for 
spirals are given in section 2. The motion of a localised spiral in the framework of 
two versions of the GL equation is considered in section 3. Also, some analytical and 
numerical results, concerning the problem of the spiral wave stability, are represented. 
In section 4 pair interactions of the spiral waves are investigated. Section 5 is devoted 
to the problem of the non-localised spiral wave dynamics in the media with soft 
excitation. In section 6 ,  the equations of motion of the non-localised spiral pair are 
obtained by means of the spiral wave-disclination analogy. In the discussion the 
connection with spiral wave dynamics in excitable media is considered. 

2. Asymptotic method 

We shall consider the evolution of those solutions of (3) that are stable (or long-lived) 
in time for E = O .  It is known that such solutions are, as a rule, simple spiral waves 
with m = *1 (Hagan 1982). Therefore, below we shall restrict ourselves to the analysis 
of these waves, although an asymptotic method can also be used for the case lm( # 1, 
provided that the corresponding solutions are stable. 

Consider now for E = 0 solution ( 5 )  in the form 

a(O'(x, y ,  t )  = + ' " ( J ( x  - + ( y  - y o ) * )  exp [ i ( tan- l y - y o  - - Po)] (7) 

where xo and yo  are the coordinates of the spiral wave core and cpo is the phase 
characterising, for example, the position of the 'leading' front (the phase can be chosen 
up to a constant). We assume that for E # 0, the values x o ,  yo and cpo are slow functions 
of time and seek a solution a , (x ,  y ,  t )  in the form of 

x-XO 

Y ,  t )  = + ' o ' ( J ( x - X o ( f ) ) 2 +  ( Y  - Y o ( N 2 )  

Substituting ( 7 )  into (3) for the functions U, and U,, we obtain a system of linear 
differential equations (a,, = U, +iu,): 

Au, + (f(lao12))+ uof:,(la012))u, + uof:o(I~012)un = Ha"' 
(9) 

Aun + (f(Ia'OJ12) + uof:,(Ia0I2))Un + uof:,,(Ia012)un = Hi"' 
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where H'") = Hg'+ iHj") are the expressions including corrections from the previous 
approximations and omitting U, and v,. For system (9) to be solved, the right-hand 
side must be orthogonal to the core of the conjugate system (C-rshkov and Ostrovsky 
1981, Aranson et al 1984). It can be easily proved that (9) is a self-conjugate system 
for a class of functions U,, v, meeting the boundary conditions: u , ( p ) ,  u , (p )+O when 
p + CO and I u , , ~ ,  (v,I 0 when p + 0. Direct substitution shows that the functions 

a ( 0 )  = ia"3) = i4(0)ei(60-eo) 
eo 

satisfy the homogeneous system (9), i.e. they are eigenfunctions of the core. Then 
solvability conditions can be written in the form 

Re 1 [H(")a?)*]  dx dy = 0 Re [ [H(')a$)*]  dx dy = 0 
J J 

Im [ H ( n ) a ( o ) * ]  dx dy = 0. I 
Most interesting are equations to the first approximation. In this case, the correction 
H(') can be represented in the form 

Substituting (12) into (111, we shall obtain the 'equation of motion' of the spiral core 
(taking into account aa(0)/at = -xoa:o) - j 0 a $ )  - i$oa(0)) 

dx dy(VVoa'o')Va(o)* = -Re C$V,~ '~ '*  dx dy I 
where 

vo=  -,-,- v = G o ,  $0, $0) ( a h  azo ai,,) 
or 

lo I la?'I' dx dy = Re &a?)* dx dy 

go I la:'12 dx dy = Re &a$'* dx dy 

do I la(O)I2 dx dy = Im dx dy 

I 
I 
I 

(the values of the variables EX and cy in the expression for  EX, ~ y )  are taken for 
the spiral core). It is seen from (12) and (14) that the equations of the spiral wave 
motion are essentially non-Newtonian: velocity, rather than acceleration, is propor- 
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tional to the applied force. Apparently, this is stipulated by a gradient form of the 
generating system (3). Corrections to the following approximations can be determined 
recurrently. 

3. Spiral wave motion in the external fields in media with hard excitations 

We shall derive equations of motion for the spiral wave core, but first we shall consider 
an important circumstance. The solvability conditions (1 1) or (14) can be met correctly 
only if the functions a“’, a?’ and a:’ vanish rather fast as p + a, i.e. the generating 
solution ( 5 )  must be localised: +‘O’(p) + 0 as p + CO. 

Possible existence of a spiral wave localised in space was first reported by Petviash- 
vili and Sergeev (1984). In that work, for a two-dimensional GL equation with hard 
exitation and long-wave instaiblity, 
aa 
-= - a  + ( p  +iP’)Ja12a -(1 +iy)la14a +(1  -ic)Aa p,p ‘ ,  y,c=constant (15) 
a t  
the authors found a stationary axially symmetric solution in the form of a rotating 
spiral wave (6). However, in that paper nothing was said about the stability of such 
solutions. 

System (15) has stationary localised solutions only when p > 2. The dynamics of 
the solutions of system (15) for p’  = y = c = 0 can be investigated by analysing the ‘free 
energy functional’ 

It can be represented in the form 

F = {I a 1 2 (  1 - I a I2/fi)’ + IV a I + ( 2 / f i  - p / 2)( a 1‘) dx dy. I 
Apparently, for p = 4/& = 2.3094. . . the functional F is non-negative for any localised 
(in the sense of finiteness of the value of F )  initial perturbation. The first derivatives 
of F with respect to time are equal to zero only in stationary solutions of (15) and, 
therefore for p s 2.3094 . . . any localised perturbations collapse as t + cc. 

On the other hand, for p > 2.3094.. . the analysis shows that in the general case it 
is ‘energetically profitable’ for the localised perturbation to spread (and for p 4 

2.3094.. . to collapse). In this case, travelling transfer fronts like those observed in 
excitable media were realised in the system. Indeed, consider a solution in the form 
of a cylindrical front 

P ’ Po 

where is a maximum possible stationary value of intensity la,,,[’. For po>> 1, the 
contribution from the exponential ‘tail’ (when p > po) is small in comparison with the 
contribution from the region 0 S p ss p o ,  which is equal to 

For > f i  (which corresponds to p = 2.3094.. .) the spreading of the solution (i.e. 
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the increase of po) corresponds to a decrease of F, i.e. it is ‘energetically profitable’. 
This situation describes the propagation of a cylindric front. The same considerations 
are valid for a three-dimensional case. 

For a more detailed analys, we carried out a direct numerical integration of ( 1 5 )  
for p’=  y = c = 0. For a spiral wave it is easy to show that R = + ( p )  = 0, i.e. the solution 
is written in the form ( 5 ) .  Besides, the gradient form allows for a significant sim- 
plification of its numerical study (in particular, it guarantees a trivial (oscillation-free) 
temporal behaviour of a ( x ,  y, t ) .  In our computer experiments the integration was 
accomplished by an implicit split-step scheme accurate to second order (Aranson er 
al 1989); the Laplacian operator on the right-hand side was calculated by a FFT method. 
The number of harmonics was chosen to be 64 x 64. 

In the numerical simulation with single-armed spirals (m = i 1 )  the following 
phenomenon was observed: quite quickly (about 1-2 characteristic times) a rather 
general initial condition generated a spiral solution similar to that depicted in figure 
l ( a ) .  Then, very slowly, the spiral wave either spread and converted into an ordinary 
non-localised spiral (see, for example, Malomed and Rudenko 1988) thus entering a 
limit state, or it collapsed. Thus, localised spiral solutions are metastable. However, 
their lifetime may be arbitrary large as p + pc = 4 / a ,  because the velocity of spreading 
is -Ip -pJ. At the same time, the spiral solutions with Inti = 2 break down in 1-2 
characteristic units of time. 

(bl 

Figure 1. Distribution of la(x, .v) i2  for the localised solution ( 5 )  ( a )  for (15) with p =2.5  
and y = c = 0, ( b )  for (16) with p = 2.5, ki = 1. T h e  size ofthe region of integration is 20 x 20. 
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It should be emphasised that even with the spiral spread, the core structure does 
not change. Thus the construction of the equations of motion for the spiral core does 
not depend significantly on its slow spreading, at least until the spiral ‘diameter’ is of 
order 1 / ~ .  This condition may be met if p is chosen to be close to p c .  

We found that the stable spiral waves exist in the short-wave GL equation with 
hard excitation 

a , = - a + p ) a ) 2 a - l a ~ 4 a - ( k ~ + A ) 2 a  p, k: = constant. (16) 
This equation is a generalisation of the well known Swift-Hohenberg equation to the 
case of an oscillatory instability (Swift and Hohenberg 1977). Here ki represents the 
scale of the initial short-wave instability. This situation occurs in binary liquid convec- 
tion (Moses and Steinberg 1986, Rehgberg et a1 1988, Kolodner and Surko 1988). The 
chaos of spiral waves in binary liquid convection was experimentally observed by 
Linde (1984). 

The stable spiral solution of (16) is shown in figure l ( b ) .  It is difficult to prove 
the stability analytically, but some considerations can be inferred from the free energy 
functional 

F =  1 ( l u [ 2 - y + ! $ + l ( k i + A ) a 1 2  ) dxdy.  

By analogy with the above considerations, we can obtain that in the range 4 1 8  G p s 
( 4 / 4 ) (  k:+ 1)1’2 the collapse or spreading of localised solutions cannot occur. 
Apparently, the propagation of the front is not profitable in the model considered 
because of the differential operator structure. In contrast, strongly inhomogeneous 
distributions, like those shown in figure 1(6), must minimise the functional (18). 

Consider now complete equations (15) or (16), taking into account the complexity 
of the coefficients (for definiteness, /3 + p + ip’) and the presence of a weak parametric 
effect at a frequency close to the natural frequency of self-oscillations. Then, the 
perturbed equation will be written in the following form: 

a U  
-= -a+(p+ip’ ) (a (2a- )a14a- (k i+A)2a+~X((a (2 ) f (~x ,  EY) e-i6‘. 
a t  

Here S is a small (of order E )  detuning and the function ,y(la12) describes the nonlinear 
response of the medium to the external effect whose spatial distribution is described 
by the function ?(EX, ~ y ) ,  which is smooth in comparison with the size of the spiral. 
The function x(la1’) can be represented as a series in ,y(laI2) = Ao+Alla/2+A21a14+. . . . 

The term A. does not make a contribution because it is orthogonal to all eigenfunc- 
tions of the core of the conjugate system. Therefore, we shall assume for simplicity 
that ,y(lal’) - laI2, i.e. we shall restrict ourselves to the first non-trivial term in the series 
(the coefficient A, can be assumed to be equal to unity). 

Perturbations may not only cause the drift of the spiral core but also initiate 
small-amplitude large-scale perturbations that can be interpreted as the radiation fields 
(Gorshkov and Ostrovsky 1981). For the case under study, the radiation fields are not 
essential, since the waves radiated by the spiral quickly damp as they move away from 
the centre of the spiral (the damping constant of plane waves in (15) is approximately 
21 ) .  Therefore we can restrict our attention to the motion of the spiral core. The 
correction H“’ in the case of interest has the form 
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Using the orthogonality condition (1 1) we shall obtain the following system of equations 
for the velocities of the spiral core: 

xo= B Re[f(&xo, &yo) ei(qo-6')] 

yo= B Im[f(&x,, eyo)ei(~o-6')~ (20) 

where 

B =;e [ JOm ( 4 ' " ( ~ ) ) ~ p  dp(  dpp( ($ r ' (p ) )2+ t  ( & ) J 2 ) - ' ]  =constant 
0 P 

In a simple case when j ( x ,  y)  = constant = CO, (20) can be represented in the form 
I 

x o  = COB cos( cpo - S t )  yo = COB sin ( cpo - s t )  Qo=O 

or 
lo = COB cos( (A - 6)  t + $0) j o  = C,B sin((A - 8) t + +o) 

where cFl0= q0(t =0) characterises the phase of the leading front of the spiral at the 
initial moment of time. Apparently, if 6 # S, the spiral rotates circularly with a radius 
ICoBI around the core that is determined by the values of xo(0 )  and yo(0). For 6 = 6, 
the spiral wave drifts with a constant velocity equal to ICoBI at an angle t,bo to the axis 
xt .  According to the terminology adopted by Agladze et a1 (1987) this phenomenon 
is called spiral wave resonance. Let us now represent the function  EX, ~ y )  in the 
form ?(EX,  ~ y )  = cos kx +,' sin ky and analyse the situation when there is no spiral 
rotation and detuning: = S = 0. Then (20) can be represented in the form of a 
Hamiltonian system with a Hamiltonian: 

B 
k 

H = - (sin Icyo+ cos kx,) aH 
io= BCOS kyo=- 

ay0 

aH 
yO=Bsinkxo=--.  

8x0 

The phase portrait of ( 2 1 )  is shown in figure 2(a ) .  One can see that system ( 2 1 )  has 
a separatrix network covering the whole x, y plane. With weak non-stationary perturba- 
tions, the separatrix network will apparently break up and a stochastic spider web 
analogous to that considered in Chernikov et a1 (1987) will appear. The stochastic 
spider web (18) indicates that the spiral wave may stochastically drift along the x, y 
plane over arbitrary long distances. Allowance for the spiral rotation 6 # 0 (or detun- 
ing) yields non-stationary (time-periodic) perturbations. In this case we shall have 
equations for the coordinates of the spiral core 

xo =  cos At cos /cyo - sin At sin bo) 

yo=  cos A t  sin kxo+sin At cos ky0) 
( 2 2 )  

that explicitly depend on time, which provides for the breaking of the separatrix 
network in the unperturbed system ( 2 2 )  (see figure 2(b ) ) .  

t In the general case, however, the spiral cannot drift over infinitely long distances; with the corrections to 
the following approximations taken into account, the frequency of the spiral rotation fi will change 
periodically, which will result in the change of the drift direction. 
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0 2 6  2 52.4 x10  

X 

l b )  
Figure 2. ( a )  Structure of the phase plane of (l-9) for H =(B/k) (s in  ky+cos kx). ( b )  
Poincare section by the period 2 a / f l  in (20) for R = k = 1, B = 3. 

The motion of the spiral core is described by quite general third-order equations 
for which chaotic solutions are known to be rather typical; therefore the stochastic 
spiral drift in external fields must be a fairly common occurrence. 

4. Dynamics of spiral pairs 

We shall describe two cases of spiral pair interaction: ( i )  the interaction of spirals 
rotating in the same direction, i.e. solutions of the form ( 5 )  having the same sign before 
eo (it is natural to call them like spiral pairs) and (ii) the interaction of unlike spiral 
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pairs, i.e. spirals rotating in opposite directions (those with different signs before eo). 
This problem is meaningful, in particular, when considering the stability of a toroidal 
vortex (figure 3). If the radius of the vortex ring R is much larger than the characteristic 
transverse size of the vortex, the vortex curvature may be neglected. Then, in the plane 
crossing the rotation axis of the vortex the field structure is specified by a pair of 
spirals rotating in opposite directions (figure 3(b)). As a result of spiral interaction 
the vortex radius R will change in time. The law of the variation was estimated by 
Panfilov et a1 (1986) and Brazhnik et a1 (1987): 

v 
A = - -  v =constant. (23) R 

These estimates show that the toroidal vortex collapses in time. However, in experi- 
ments stable toroidal vortices were also observed (Brazhnik et a1 1987). We believe 
that a stable ‘bound state’ of a spiral pair, i.e. the state where the distance between 
the spirals does not change in time, must correspond to a stable toroidal vortex. 

t ‘  
f ’  

X 

Figure 3. ( a )  Structure of the toroidal vortex ring; ( b )  cross section of vortex ring for R >> 1. 

Consider first the interaction of widely spaced spirals. Since the field of each spiral 
decreases exponentially fast from the core (one can easily obtain the asymptotic form), 
a widely spaced (at a distance much larger than the characteristic size of the spiral) 
spiral pair has a field that is close to the superposition of the fields of each spiral, i.e. 

a = 4 ( ’ ) ( d  exp[i(e1 - cpl)I+ 4‘O’(p2) exp[i(o2m - cp2)1 (24) 
where 

Like spirals (i.e. rotating in the same direction) correspond to m = 1 ,  while unlike 
spirals (rotating in opposite directions) correspond to m = -1 .  In this case, the field 
of one spiral that slightly perturbs the other one causes the drift. 

Substitute (24) into ( 1 5 )  or (16) and take into account the nonlinear terms respon- 
sible for the spiral interaction. For definiteness, we shall speak of the solution with 
the index 1 (the same consideration holds for the other spiral wave). The correction 
H‘,” for the chosen solution has the following form (the field of the second spiral at 
the core of the first one will be the perturbation): 
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Similarly 

The orthogonality conditions (13) and (14) may, apparently, be represented in a vector 
form 

( AVl, i )  = -Re Vl,2a:oi*6 dx dy (26) 5 
where j l , 2 ,  d , , , )  is the velocity vector, 

and 

A =  [r 0 m, O. 
0 m, 

is the mass tensor, where m,  = m, = 4 5 I V U ‘ ~ ’ ~ ~  dx dy and m, = 5 1u(’312 dx dy, and 6 are 
the perturbations generated in the interaction. The terms in (26) which do not contain 
the product of U?)  and a;’’ can be omitted because they either do not contribute to 
the orthogonality conditions or have the next order of smallness. Besides, it is con- 
venient to rewrite the orthogonality conditions in a more symmetric form. Taking into 
account that V , a h ” ~ 0 ,  we obtain 

The value 

which coincides with a non-square part of the free energy functional can be considered 
as a pair interaction potential. Then, the equations of spiral motion can be written in 
a gradient form 

a a 
U m,,41,2 = -- U m,d1,2 = -- U. 

a 
m,x1,2 = -- 

JXI,2 ay  1.2 aQ1.2 
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The expressions for the potential U can be calculated taking into account that the 
distance between the spirals R = [(xl - x2)’+ (yl - Y ~ ) ~ ] ’ ’ ~  is large and the field of the 
second spiral can be replaced by an asymptotic expression for p + 00. Then 

In the framework of the Ginzburg-Landau equation with long-wave instability ( 1 9 ,  
the asymptotic expression for the field of the second spiral can be written in the form 

A0 
6 2  

ai0’(p) - - exp[-p2 + i m 2  - v2)1 

where X = x - xl, Y = y - y, , R = are difference coordinates and I,h12 = tan-’, 
( Y / X )  is the viewing angle of the second spiral from the site of the first spiral, 
r = [ ( x - ~ ~ ) ~ + ( y - y ~ ) ~ ] ” ~ .  

Substituting (30) into (29) for like spirals ( m  = 1 )  yields 

e-R 
= cx cos(Ql- Q 2 )  

where 

c = $Ao Re r(/3qjc0” - qj“)’) exp( -r cos e - i t )  d t  d r  = constant. I 
As a result, we obtain an equation for difference coordinates: 

e-R 
qi = +c2 sin Q- a 

where q 2  = constant and = q2 - c p l .  This system is readily integrated because the 
value X/ Y = constant is retained. The spirals either collapse or vanish to infinity 
without bound state formation depending on the sign of the constant c. 

For m = -1 (unlike spirals) we obtain the following expression for the potential: 

Simple verification of the equations generated by this potential shows that it has no 
fixed points. Hence, in view of the gradient form of the system, unlike spirals do not 
form bound states either and tend to scatter one another. 
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(6) 
Figure 4. Distribution of l a (x ,y ) I2  for bound states for (16): ( a )  rotating in the same 
direction ( m  = 1); ( b )  rotating in the opposite directions ( m  = -1). 

The situation is essentially different in media with short-wave instability, described 
by (16). The asymptotic expressions for the spiral tail have the following form: 

cos( ER + 5 0 )  

x C O S ( ~ R  +to) exp[-ar cos(e - t412)1 Ao,  to = constant 

where a, k' are some constants, characterising oscillatory decay of the spiral 'tail' 

a = 1Re-l E =  I I m m I .  

Then, for like spirals we shall have 

e-aR 
a? U = C- COS( LR + to) COS cp c = constant 

and for unlike spirals we shall have 

e-aR 
0 U = c-cos(cp+2JI1~) C O S ( ~ R + ( ~ ) .  

In either case these potentials have a countable number of stable fixed points 
corresponding to bound states: spiral dipoles (when m = -1) and double spirals (when 
m = 1). These states were observed in a direct numerical experiment with (16). The 
results are shown in figure 4. Therefore, one may hope that a stable toroidal vortex 
exists in the framework of (16). 

5. Spiral wave motion in media with soft excitation 

For such media the G L  equation that can be obtained, for example, near a long-wave 
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instability threshold (Malomed and Rudenko 1988), can be written as 

(34) 
aa - = a - ( 1  +ip‘)la12a +( 1 -ic)Aa a r  p’ ,  c = constant. 

This equation has a spiral solution in the form (5) (Hagan 1982, Mikhailov and Krinsky 
1983, Malomed 1986) but, in contrast to the solutions considered above, here as p + 00, 

d ‘ ” ( p )  + 1 .  The stability of such a solution for small p’ ,  c was proved in Hagan (1982). 
For p’ = c = 0 this equation can be written in the gradient form (1) with the ‘free energy’ 
functional: 

F = - {  (la12-y-lVa12 l a I 4  ) dxdy.  

Consider now the perturbed equation (34) in the form 

aa 
-= a - ( 1  +iP’)la12a +ha  + &$[a]. 
a t  

(35) 

As in the previous case, we shall seek solutions close to the spiral ( 5 ) ,  (6).  Then for 
the functions U, and U, we shall have 

Au,, + ( 1  - 24‘0’2 + Re( a(o))2)u, - Im( u(o) )2vn = HF’ 

Av,+(l -2~‘0’2-Re(a‘0’)2)v,-Im(a‘0’)2un =Hi“) (37) 
a ,=u ,+iv , .  

Here all values have the same sense as in (9). Under the boundary conditions for U,, 
U, in the form 

( $)2 + ( $)2 + 0 

when p + CO, u i ( 0 )  + v i ( 0 )  < cc the system is self-conjugate as a whole, therefore the 
solutions of the conjugate system (37) coincide with (10) and the solvability conditions 
coincide with (11). However, this case differs significantly from the previous one: the 
functions a“’, ay ) ,  and ay) are rlot quadratically integrable because Ia(o)/2 = 1 - l / p 2  
for p + cc and the integrals in ( 1  1 )  diverge when p + CO. As a consequence, the solvability 
conditions are not met for the arbitrary function $[a]. Physically, this is explained 
by the fact that the spiral wave field in (34) does not vanish and the wave energy is 
infinite. Even for weak perturbations, in (34) we must take into account distortions 
in the wave structure as p + 00, i.e. consider ‘radiation fields’. Because the integration 
is over an infinite surface, the radation field energy can also be infinite and affect the 
behaviour of the spiral wave significantly?. Therefore, in contrast to localised spiral 
waves which interact with each other and with radiation by means of ‘tails’, in this 
case waves may interact by means of radiation that is difficult to take into account. 

We shall now be concerned with a particular class of perturbations. Assume that 
the supercriticality parameter D2 in (35)  is a slow function of coordinates and time. 
Besides, we shall take into account weak complexity p’ # 0. Consider for definiteness 
the equation 

aa 
- = ( D2( x, y ,  r ) + i s w  (x, y ,  r ))a - ( 1 + ip ‘)I a I2a + ha. 
a t  

t The radiation emerging in the spiral-boundary interaction was taken into account by Biktashev (1989). 
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To a zeroth approximation with respect to E the functions D 2  and w can be assumed 
constant, which yields a solution of the form 

For E # 0 we shall seek a solution in the form (8). The divergence in (1 1) will be 
eliminated as follows. We shall introduce a characteristic size of the spiral wave: r, - 1 
is the core radius. In addition, by analogy with Hagan (1982) we shall introduce the 
size of the ‘internal asymptotic expansion’ Ri,  which meets the condition rc<< Ri<< 1 / ~ .  
Assume that in the limit 

the spiral behaves as an entity and the solution of the form (39) is retained for E # 0. 
To the first approximation, we shall not consider the field behaviour in the external 
region p >> Ri. Assume also that the scale of the variation of w ( x ,  y, t )  and D 2 ( x ,  y, t )  
is much larger than Ri (and not rc as for the case of localised spirals). 

In this case the correction H”’ has the form 

where 

(5,77) = ( E X ,  E Y ) .  

Substituting (40) into (11) and choosing appropriate io, Po and +o we shall eliminate 
the terms growing under the orthogonality conditions as p + m .  The resulting 
expressions (1 1) will become finite and might be easily compensated in the following 
approximation by the addition of a small perturbation to ul , v l  , which can be interpreted 
as the appearance of weak radiation (see also Biktashev (1989)). 

Analysis shows that the following equations must be fulfilled: 

Specifying the form of D2 and w we can find a complex, even stochastic, spiral wave 
drift over the x, y plane. 

However, this method does not hold for the analysis of the effect of perturbations 
of a more general form, for example, the perturbations caused by the interaction of 
spirals in a pair. Therefore, for interactions of such a type we shall use a different 
approach. 

6. Drift of a spiral pair. Analogy with disclination drift in liquid crystals. 

Rewrite (34) (for p ‘ =  c = 0 )  in the variables of the modulus I = \ai2 and phase C#I = arg U.  
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Then we shall obtain a system of the form 
az  
at  
- = Z - 1 3 + A I - ( V + ) 2 Z  

*=Ai$ at +2(?, O m > .  

We can easily make sure that in the spiral solution ( 5 ) ,  V I l V 4 ,  and the phase 
distribution is described by the equation 

This equation can also be written in the gradient form ( 1 )  with the free energy functional 

F = -  lVc$I2 dx dy (44) 2 'I 
This is precisely the equation which describes the director field distribution in nematic 
crystals (see, for example, Chandrasekhar and Ranganath 1986). Thus, we can use 
the spiral wave-disclination analogy and the results known for it. Equation (43) has 
the known solutions in the form of individual disclination of strength S (Chandrasekhar 
and Ranganath 1986): 

4(p,e)=se+c (45) 
where C = constant and S = *;, *l ,  *:. , . . However, for the spiral waves of interest 
there must be no disclinations of half-integer strength, since the directions of C#I and 
- 4  are significant in (34). Therefore in our case individual disclinations (corresponding 
to single-armed spiral waves which are stable in (34)) have the strength IS1 = 1. Here, 
in contrast to liquid crystals, only the modulus of S is of interest (the sign of S denotes 
the direction of spiral rotation). 

We shall use the spiral wave-disclination analogy for the investigation of spiral 
wave interaction. It is known that in an unbounded medium a single disclination (and, 
hence, a spiral) has infinite energy. To eliminate this disagreement, following Chan- 
drasekhar and Ranganath (1986), we shall assume that the region Rb where the spiral 
is located is bounded though very large in comparison with the size of the core: Rb >> r, .  
Besides, the disclination energy diverges as p + 0. In the theory of liquid crystals this 
singularity is omitted because when p + O  the director field structure is different: as 
p + 0 the nematic transforms to an ordinary liquid and the energy in the region 0 < p < r, 
is finite and equal to E, .  

The same approach holds for spiral waves. However, the finiteness of the core 
energy has a different origin. In the initial equation (35) the value V#I enters in the 
expression for free energy only in the combination 1 2 ( V 4 1 2 .  Because when p + 0, Z - p p  
and p =constant, 121Vb1* dx dy = E ,  is a finite value. This circumstance enables us 
to consider the energy of the spiral wave core also to be finite. Under these assumptions 
the spiral wave energy will be finite and equal to 

R b  E = - IV+12 dx dy = E,  + T In -. 
2 'I rC 

Now we consider the interaction of two spiral waves. Unlike in the case considered 
in section 4, the solution in the form of two spiral waves is not a superposition of 
solutions of the form (24) because here 1a(o)12+ 1 as p +a. 
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A two-spiral solution can be constructed as follows. Far from each spiral, the field 
must be unperturbed, i.e., I = Ia(')l2+ 1, provided that the distance between the spiral 
cores is much larger than the core radius r,. In the vicinity of each of the spirals the 
field must be close to the self-field of the spiral, i.e. it is described by ( 5 ) .  Therefore, 
everywhere except small regions near the spiral cores I - 1 the term ( V I V 4 )  in (42) 
can be omitted and the equation for intensity will be separated, while the phase of the 
two-spiral solution will again be described by (43)t. Equation (43) is linear; therefore, 
sufficiently far from the spiral cores, the field will be a superposition of the fields of 
individual spirals. Then the solution for 4 may be represented as (Chandrasekhar 
and Ranganath 1986) 

4 ( x ,  y, t )  = S ,  tan- 

Below we shall assume that the distance between the spiral cores meets the relation 
rc<< R12= [ ( X ~ - X ~ ) ~ + ( Y ,  - Y ~ ) ~ ] ' " < <  Rb.  We shall use (47) for the calculation of the 
energy of spiral interaction. Substituting (47) into (44), after integration we shall 
obtain a known expression for the energy of disclination pairs (see Chandrasekhar 
and Ranganath 1986) 

R b  E = 2 7 ( SI + S2 ) In - + El 2 + 2 E,  
rc 

where 

E,2= -SI& ln(R12/rc) (49) 
is the interaction energy. The force of spiral interaction is determined by F12 = -VEI2. 
From this expression it follows that the spirals rotating in the same direction ( S ,  = S,)  
repel and those rotating in opposite directions attract each other. It follows from (43) 
and (49) that under the action of forces the spirals will move as if in a viscous medium 
with a definite velocity. The 'frictional force' that will appear in this case will balance 
the force of interaction. From the condition of the equality of the frictional force and 
the force of spiral pair interaction, we can determine the law according to which xl,, 
and yl,2 are time dependent (to the first approximation acceleration can be neglected). 
To this end, consider a spiral moving with a constant (but low) velocity U along, for 
example, x. For IvI<< 1 the solution can be represented in the form 

+(x, y, t )  =tan-' - 
( x 3  

Substituting (50) into (44), we shall obtain the relation 

U& = A+. ( 5 1 )  
Under the action of the frictional force the energy in the system will change. Since 
the energy variation is equal to the work done by the frictional force F,, the displacement 
of the spiral within d l  in time d t  from the conservation-of-energy law yields the energy 
variation 

( 5 2 )  dl  F, = -dE = -( F (  t + dt )  - F (  t ) )  

t Such an approach does not hold for the descriptions of the interaction of the spiral waves considered in 
sections 3 and 4. In this solution 1a(o)/2 -P 0 as p + CO, therefore the term (VI/I)Vd cannot be omitted because 
small changes in intensity lead to large changes in phase. 
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where F, is the frictional force. Taking into account that U = dZ/dt and using (51) ,  
we shall have 

u F v = - - = -  a t  2 -lV412dxdy=-u2{ a t  4 ;dxdy  
aF  ‘ J a  

= -1 U’ JVrp12dx dy 
2 

Then the frictional force will be 

where F, is the intrinsic free energy of an isolated spiral. Equating the frictional force 
to the force of interaction, we shall obtain the following equations of motion for the 
spirals rotating in opposite directions: 

a x2,1 - x1,2 

a YZ.1 - Y 1.2 

F,X,,J = - El,* = 

Foj,,* = - EL2 = 

axl.’ R:2 

a Y L 2  R:Z * 

(54) 

Or, introducing RIZ,  we shall obtain 

Thus, as t + CO this spiral pair collapses. However, the collapse time depends on Fo,  
i.e. on the medium size. In an unbounded medium Fo+ 00 and, hence, / U / +  0, i.e. the 
spiral waves ‘freeze in’. 

A similar analysis can be performed for spiral pair interaction in terms of complete 
equations (34) or (42). For example, we can calculate the frictional forces acting on 
the spiral drifting along x, y and rotating around 8. Analogous considerations for 
energy variation give the friction coefficients along x 

m, = J lal;o’12 dx dy =I J IVa‘O’J* dx dy 
2 

along y 

m, = J la:’\’ dx dy =I J JVa‘0’12 dx dy 
2 

and along 8 

me = I la‘0’12 dx dy. 

Comparison with (14) shows that these coefficients coincide with those for lo, j o ,  and 
do that were derived asymptotically in section 2. For the spiral to drift in an unbounded 
medium all forces must be proportional to the corresponding damping coefficients m,, 
my and me, i.e. they also must be infinite (this case was considered in section 5 ) .  If 
the forces are finite, then the spirals are frozen, as we have already mentioned, in an 
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unbounded medium and perturbations distort the spiral field but do not shift the spiral 
(it is natural to interpret these perturbations as radiation). 

A complete functional (35) can be used for the calculation of the coupling potential 
for the two waves in terms of the initial equation (36). Apparently, the case considered 
here corresponds to the allowance made only for the last term in (35) because 

Allowance made for the first two terms adds to the logarithmic coupling potential 
(49) the power terms RT;, y >  1 that are negligibly small when Rlz+m. Thus, in the 
‘phase approximation’ used in section 6 we find the main expansion term of the 
coupling potential of spiral pairs. 

To conclude this section we would like to note that the approach developed may 
also be used for describing the behaviour of non-localised spiral waves in media with 
hard excitation. It is known that besides the solutions localised when p + a, in such 
media there exist stable non-localised solutions: la[’ + constant when p + CO. Because 
only the asymptotic behaviour for p + CO is essential in the analysis performed here, 
all considerations in section 6 are valid (with the exception, most probably, of the core 
energy Ec). 

- IVc$\*, as p +a. 

7. Discussion 

In conclusion we shall discuss the problems related to the results obtained in this 
work: (i)  the methods for describing solutions in the form of quasiharmonic spiral 
waves and (ii) the origin of spatial disorder in nonlinear non-equilibrium media. 

(i) It is essential that quite different mechanisms may be responsible for the 
formation and stable existence of spiral waves (waves with rotating wavefronts) which 
look very much alike. Like plane waves that may be gradient in nature, quasiharmonic 
or resemble shock waves, depending on the properties of the medium (the presence 
of excitation threshold, dispersion, the type of nonlinearity), spiral waves may also be 
different, depending on the medium properties. Therefore different methods are needed 
for their description. 

Today spiral waves in excitable media, i.e. media with relaxation point dynamics 
(for example, when an isolated element of the medium is described by a trigger or a 
multivibrator equation), seem to be best investigated. Usually, when the waves propa- 
gate in such a medium (like a cardiac muscle or a nerve fibre (Krinsky and Yakhno 
1980, Kuramoto 1982)) the effects of long-range interaction are not essential and spiral 
waves may be described in a kinematic approximation (Brazhnik et a1 1988, Meron 
and Pelce 1988)) that is based on the consideration of waves which are nearly kinematic. 
A pure case of kinematic waves are gradient waves in a strip of falling dominoes. It 
is natural that the asymptotic method developed above does not hold for the analysis 
of waves which are nearly kinematic. 

On the other hand, the kinematic approach will not, evidently, hold for the 
investigation of another limiting class of spiral waves-quasiharmonic dispersion 
waves. Such waves are typical, in particular, of some two-dimensional hydrodynamic 
flows (Huerre 1987), and may be generated in two-dimensional reactors where an 
autocatalytic chemical reaction proceeds (Kuramoto 1982) and so on. The method 
proposed in this paper is suitable for these very waves. 

(ii) We have not obtained rigorous results on spatio-temporal chaos and random 
walks of localised structures in two-dimensional media (it is very hard to provide such 
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long-time numerical simulations), but the one-dimensional case was investigated in 
our recent paper (Aranson et a1 1989). We hope the results of this paper are sufficiently 
common. 

Note in conclusion that it is interesting to generalise the problems under study to 
a three-dimensional case. Here it is natural to use as the generating solutions gradient 
or nearly gradient models demonstrating stable localised particle-like solutions. A new 
class of such solutions was found, in particular, by Gorshkov et a1 (1989). 
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